Microbial thiocyanate utilization under highly alkaline conditions.

نویسندگان

  • D Y Sorokin
  • T P Tourova
  • A M Lysenko
  • J G Kuenen
چکیده

Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO-) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a "cyanate pathway" in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capable of heterotrophic nitrification under alkaline conditions

An alkali-tolerant bacterium, Pseudomonas aeruginosa STK 03 (accession number KR011154), isolated from an oil spill site, was evaluated for the biodegradation of free cyanide and thiocyanate under alkaline conditions. The organism had a free cyanide degradation efficiency of 80 and 32 % from an initial concentration of 250 and 450 mg CN-/L, respectively. Additionally, the organism was able to d...

متن کامل

Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions

The continuous discharge of cyanide-containing effluents to the environment has necessitated for the development of environmentally benign treatment processes that would result in complete detoxification of the cyanide-containing wastewaters, without producing additional environmental toxicants. Since biological detoxification of hazardous chemical compounds has been renowned for its robustness...

متن کامل

Genome‐resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings

Thiocyanate (SCN- ) is a toxic compound that forms when cyanide (CN- ), used to recover gold, reacts with sulfur species. SCN- -degrading microbial communities have been studied, using bioreactors fed synthetic wastewater. The inclusion of suspended solids in the form of mineral tailings, during the development of the acclimatized microbial consortium, led to the selection of an active plankton...

متن کامل

A Simple Method for the Size Controlled Synthesis of Stable Oligomeric Clusters of Gold Nanoparticles under Ambient Conditions.

Reducing dilute aqueous HAuCl4 with sodium thiocyanate (NaSCN) under alkaline conditions produces 2 to 3 nm diameter nanoparticles. Stable grape-like oligomeric clusters of these yellow nanoparticles of narrow size distribution are synthesized under ambient conditions via two methods. The delay-time method controls the number of subunits in the oligoclusters by varying the time between the addi...

متن کامل

Rapid extraction of DNA from diverse soils by guanidine thiocyanate method.

Molecular methods are being frequently used for the study of soil microbial communities as majority of naturally occurring microbial populations are non-culturable. In the present study, we describe a protocol of DNA extraction from diverse soils using a combination of heat, enzyme (lysozyme) and guanidine thiocyanate. The efficacy of the procedure was evaluated in terms of yield, purity and du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2001